Improved Accuracy for Alternating-direction Methods for Parabolic Equations Based on Regular and Mixed Finite Elements
نویسنده
چکیده
An efficient modification by Douglas and Kim of the usual alternating directions method reduces the splitting error from O(k2) to O(k3) in time step k. We prove convergence of this modified alternating directions procedure, for the usual non-mixed Galerkin finite element and finite difference cases, under the restriction that k/h2 is sufficiently small, where h is the grid spacing. This improves the results of Douglas and Gunn, who require k/h4 to be sufficiently small, and Douglas and Kim, who require that the locally onedimensional operators commute. We propose a similar and efficient modification of alternating directions for mixed finite element methods that reduces the splitting error to O(k3), and we prove convergence in the noncommuting case, provided that k/h2 is sufficiently small. Numerical computations illustrating the mixed finite element results are also presented. They show that our proposed modification can lead to a significant reduction in the alternating direction splitting error.
منابع مشابه
A new positive definite semi-discrete mixed finite element solution for parabolic equations
In this paper, a positive definite semi-discrete mixed finite element method was presented for two-dimensional parabolic equations. In the new positive definite systems, the gradient equation and flux equations were separated from their scalar unknown equations. Also, the existence and uniqueness of the semi-discrete mixed finite element solutions were proven. Error estimates were also obtaine...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملOn Accuracy of Alternating Direction Implicit Methods for Parabolic Equations
We study accuracy of alternating direction implicit (ADI) methods for parabolic equations. The original ADI method applied to parabolic equations is a perturbation of the Crank-Nicolson di erence equation and has second-order accuracy both in space and time. The perturbation error is on the same order as the discretization error, in terms of mathematical description. However, we often observe i...
متن کاملApplication Of Alternating Group Explicit Method For Parabolic Equations
Qinghua Feng School of Science Shandong university of technology Zhangzhou Road 12#, Zibo , Shandong, 255049 China [email protected] Abstract: Based on the concept of decomposition, two alternating group explicit methods are constructed for 1D convection-diffusion equation with variable coefficient and 2D diffusion equations respectively. Both the two methods have the property of unconditional sta...
متن کاملHigher-Order Difference and Higher-Order Splitting Methods for 2D Parabolic Problems with Mixed Derivatives
In this article we discuss a combination between fourth-order finite difference methods and fourth-order splitting methods for 2D parabolic problems with mixed derivatives. The finite difference methods are based on higher-order spatial discretization methods, whereas the timediscretization methods are higher-order discretizations using CrankNicolson or BDF methods. The splitting methods are hi...
متن کامل